Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Front Psychol ; 14: 1184016, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37397322

RESUMO

Introduction: Research has identified simulation-based training with chatbots and virtual avatars as an effective educational strategy in some domains, such as medicine and mental health disciplines. Several studies on interactive systems have also suggested that user experience is decisive for adoption. As interest increases, it becomes important to examine the factors influencing user acceptance and trust in simulation-based training systems, and to validate applicability to specific learning tasks. The aim of this research is twofold: (1) to examine the perceived acceptance and trust in a risk assessment training chatbot developed to help students assess risk and needs of juvenile offenders, and (2) to examine the factors influencing students' perceptions of acceptance and trust. Methods: Participants were 112 criminology students in an undergraduate course in a Canadian university. Participants were directed to use a custom-designed chatbot with a virtual 3D avatar for juvenile offenders' risk assessment training, to complete online questionnaires and a risk assessment exercise. Results: Results show satisfactory levels of acceptance and trust in the chatbot. Concerning acceptance, more than half appeared to be satisfied or very satisfied with the chatbot, while most participants appeared to be neutral or satisfied with the benevolence and credibility of the chatbot. Discussion: Results suggest that acceptance and trust do not only depend on the design of the chatbot software, but also on the characteristics of the user, and most prominently on self-efficacy, state anxiety, learning styles and neuroticism personality traits. As trust and acceptance play a vital role in determining technology success, these results are encouraging.

2.
Comput Med Imaging Graph ; 104: 102165, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36599223

RESUMO

Finite element methods (FEM) are popular approaches for simulation of soft tissues with elastic or viscoelastic behavior. However, their usage in real-time applications, such as in virtual reality surgical training, is limited by computational cost. In this application scenario, which typically involves transportable simulators, the computing hardware severely constrains the size or the level of details of the simulated scene. To address this limitation, data-driven approaches have been suggested to simulate mechanical deformations by learning the mapping rules from FEM generated datasets. Prior data-driven approaches have ignored the physical laws of the underlying engineering problem and have consequently been restricted to simulation cases of simple hyperelastic materials where the temporal variations were effectively ignored. However, most surgical training scenarios require more complex hyperelastic models to deal with the viscoelastic properties of tissues. This type of material exhibits both viscous and elastic behaviors when subjected to external force, requiring the implementation of time-dependant state variables. Herein, we propose a deep learning method for predicting displacement fields of soft tissues with viscoelastic properties. The main contribution of this work is the use of a physics-guided loss function for the optimization of the deep learning model parameters. The proposed deep learning model is based on convolutional (CNN) and recurrent layers (LSTM) to predict spatiotemporal variations. It is augmented with a mass conservation law in the lost function to prevent the generation of physically inconsistent results. The deep learning model is trained on a set of FEM datasets that are generated from a commercially available state-of-the-art numerical neurosurgery simulator. The use of the physics-guided loss function in a deep learning model has led to a better generalization in the prediction of deformations in unseen simulation cases. Moreover, the proposed method achieves a better accuracy over the conventional CNN models, where improvements were observed in unseen tissue from 8% to 30% depending on the magnitude of external forces. It is hoped that the present investigation will help in filling the gap in applying deep learning in virtual reality simulators, hence improving their computational performance (compared to FEM simulations) and ultimately their usefulness.


Assuntos
Aprendizado Profundo , Realidade Virtual , Simulação por Computador
3.
AMIA Jt Summits Transl Sci Proc ; 2022: 244-253, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35854744

RESUMO

The COVID-19 pandemic presented challenges to the healthcare system while catalyzing the adoption of virtual care. The need for remote assessment and real-time monitoring of physiological vital signs has driven towards a need for virtual care solutions. This paper presents the outcome of a multidisciplinary collaboration to ensure clinical usability of a remote contactless sensing technology, VitalSeer, and to help close gaps between emerging technologies and clinical practice. The paper describes the user-centric data-driven clinical approach to address the needs as identified by clinical experts through the iterative and agile development cycle. It highlights findings from preliminary studies to validate proof-of-concept VitalSeer's adoptability, accessibility and usability. The studies on volunteers demonstrated the accuracy of VitalSeer's heart rate model at a low MAE of 0.74 (bpm) and a RMSE of 1.2 bpm, below the threshold of clinical grade contact-based sensors. The paper concludes with a discussion on the technology implications in emergency medicine and community care.

4.
Med Phys ; 46(5): 2243-2250, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30887526

RESUMO

PURPOSE: To demonstrate selection of a small representative subset of images from a pool of images comprising a potential atlas (PA) pelvic CT set to be used for autosegmentation of a separate target image set. The aim is to balance the need for the atlas set to represent anatomical diversity with the need to minimize resources required to create a high quality atlas set (such as multiobserver delineation), while retaining access to additional information available for the PA image set. METHODS: Preprocessing was performed for image standardization, followed by image registration. Clustering was used to select the subset that provided the best coverage of a target dataset as measured by postregistration image intensity similarities. Tests for clustering robustness were performed including repeated clustering runs using different starting seeds and clustering repeatedly using 90% of the target dataset chosen randomly. Comparisons of coverage of a target set (comprising 711 pelvic CT images) were made for atlas sets of five images (chosen from a PA set of 39 pelvic CT and MR images) (a) at random (averaged over 50 random atlas selections), (b) based solely on image similarities within the PA set (representing prospective atlas development), (c) based on similarities within the PA set and between the PA and target dataset (representing retrospective atlas development). Comparisons were also made to coverage provided by the entire PA set of 39 images. RESULTS: Exemplar selection was highly robust with exemplar selection results being unaffected by choice of starting seed with very occasional change to one of the exemplar choices when the target set was reduced. Coverage of the target set, as measured by best normalized cross-correlation similarity of target images to any exemplar image, provided by five well-selected atlas images (mean = 0.6497) was more similar to coverage provided by the entire PA set (mean = 0.6658) than randomly chosen atlas subsets (mean = 0.5977). This was true both of the mean values and the shape of the distributions. Retrospective selection of atlases (mean = 0.6497) provided a very small improvement over prospective atlas selection (mean = 0.6431). All differences were significant (P < 1.0E-10). CONCLUSIONS: Selection of a small representative image set from one dataset can be utilized to develop an atlas set for either retrospective or prospective autosegmentation of a different target dataset. The coverage provided by such a judiciously selected subset has the potential to facilitate propagation of numerous retrospectively defined structures, utilizing additional information available with multimodal imaging in the atlas set, without the need to create large atlas image sets.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Pelve/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Análise por Conglomerados , Humanos , Imageamento por Ressonância Magnética , Masculino , Neoplasias da Próstata/diagnóstico por imagem
5.
Br J Radiol ; 92(1098): 20190056, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30912956

RESUMO

OBJECTIVE: PROMETHEUS (ACTRN12615000223538) is a multicentre clinical trial investigating the feasibility of 19 Gy in 2 fractions of stereotactic body radiotherapy (SBRT) as a boost technique for prostate cancer. The objective of this substudy was to evaluate intrafraction motion using cine MRI and assess the dosimetric impact of using a rectal displacement device (RDD). METHODS: The initial 10 patients recruited underwent planning CT and MRI, with and without a RDD. Cine MRI images were captured using an interleaved T2 HASTE sequence in sagittal and axial planes with a temporal resolution of 5.2 s acquired over 4.3 min. Points of interest (POIs) were defined and a validated tracking algorithm measured displacement of these points over the 4.3 min in the anteroposterior, superior-inferior and left-right directions. Plans were generated with and without a RDD to examine the impact on dosimetry. RESULTS: There was an overall trend for increasing displacement in all directions as time progressed when no RDD was in situ . points of interest remained comparatively stable with the RDD. In the sagittal plane, the RDD resulted in statistically significant improvement in the range of anteroposterior displacement for the rectal wall, anterior prostate, prostate apex and base. Dosimetrically, the use of a RDD significantly reduced rectal V16, V14 and Dmax, as well as the percentage of posterior rectal wall receiving 8.5 Gy. CONCLUSION: The RDD used in stereotactic prostate radiotherapy leads to reduced intrafraction motion of the prostate and rectum, with increasing improvement with time. It also results in significant improvement in rectal wall dosimetry. ADVANCES IN KNOWLEDGE: It was found that the rectal displacement device improved prostate stabilization significantly, improved rectum stabilization and dosimetry significantly. The rectal displacement device did not improve target volume dosimetry.


Assuntos
Neoplasias da Próstata/radioterapia , Radiocirurgia/métodos , Pontos de Referência Anatômicos , Estudos de Viabilidade , Humanos , Imobilização/métodos , Imagem Cinética por Ressonância Magnética , Masculino , Movimento , Radiometria , Dosagem Radioterapêutica
6.
Comput Methods Programs Biomed ; 164: 193-205, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30195427

RESUMO

Biomedical imaging analysis typically comprises a variety of complex tasks requiring sophisticated algorithms and visualising high dimensional data. The successful integration and deployment of the enabling software to clinical (research) partners, for rigorous evaluation and testing, is a crucial step to facilitate adoption of research innovations within medical settings. In this paper, we introduce the Simple Medical Imaging Library Interface (SMILI), an object oriented open-source framework with a compact suite of objects geared for rapid biomedical imaging (cross-platform) application development and deployment. SMILI supports the development of both command-line (shell and Python scripting) and graphical applications utilising the same set of processing algorithms. It provides a substantial subset of features when compared to more complex packages, yet it is small enough to ship with clinical applications with limited overhead and has a license suitable for commercial use. After describing where SMILI fits within the existing biomedical imaging software ecosystem, by comparing it to other state-of-the-art offerings, we demonstrate its capabilities in creating a clinical application for manual measurement of cam-type lesions of the femoral head-neck region for the investigation of femoro-acetabular impingement (FAI) from three dimensional (3D) magnetic resonance (MR) images of the hip. This application for the investigation of FAI proved to be convenient for radiological analyses and resulted in high intra (ICC=0.97) and inter-observer (ICC=0.95) reliabilities for measurement of α-angles of the femoral head-neck region. We believe that SMILI is particularly well suited for prototyping biomedical imaging applications requiring user interaction and/or visualisation of 3D mesh, scalar, vector or tensor data.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Gráficos por Computador , Articulação do Quadril/diagnóstico por imagem , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Interpretação de Imagem Assistida por Computador/estatística & dados numéricos , Processamento de Imagem Assistida por Computador/estatística & dados numéricos , Imageamento Tridimensional/métodos , Imageamento Tridimensional/estatística & dados numéricos , Bibliotecas Digitais , Imageamento por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/estatística & dados numéricos , Software , Interface Usuário-Computador
7.
Phys Med Biol ; 62(22): 8566-8580, 2017 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-28976369

RESUMO

In MR only radiation therapy planning, generation of the tissue specific HU map directly from the MRI would eliminate the need of CT image acquisition and may improve radiation therapy planning. The aim of this work is to generate and validate substitute CT (sCT) scans generated from standard T2 weighted MR pelvic scans in prostate radiation therapy dose planning. A Siemens Skyra 3T MRI scanner with laser bridge, flat couch and pelvic coil mounts was used to scan 39 patients scheduled for external beam radiation therapy for localized prostate cancer. For sCT generation a whole pelvis MRI (1.6 mm 3D isotropic T2w SPACE sequence) was acquired. Patients received a routine planning CT scan. Co-registered whole pelvis CT and T2w MRI pairs were used as training images. Advanced tissue specific non-linear regression models to predict HU for the fat, muscle, bladder and air were created from co-registered CT-MRI image pairs. On a test case T2w MRI, the bones and bladder were automatically segmented using a novel statistical shape and appearance model, while other soft tissues were separated using an Expectation-Maximization based clustering model. The CT bone in the training database that was most 'similar' to the segmented bone was then transformed with deformable registration to create the sCT component of the test case T2w MRI bone tissue. Predictions for the bone, air and soft tissue from the separate regression models were successively combined to generate a whole pelvis sCT. The change in monitor units between the sCT-based plans relative to the gold standard CT plan for the same IMRT dose plan was found to be [Formula: see text] (mean ± standard deviation) for 39 patients. The 3D Gamma pass rate was [Formula: see text] (2 mm/2%). The novel hybrid model is computationally efficient, generating an sCT in 20 min from standard T2w images for prostate cancer radiation therapy dose planning and DRR generation.


Assuntos
Imageamento por Ressonância Magnética/métodos , Modelos Estatísticos , Órgãos em Risco/efeitos da radiação , Neoplasias da Próstata/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Guiada por Imagem/métodos , Tomografia Computadorizada por Raios X/métodos , Idoso , Osso e Ossos/efeitos da radiação , Humanos , Masculino , Pessoa de Meia-Idade , Imagem Multimodal/métodos , Pelve/efeitos da radiação , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Radioterapia de Intensidade Modulada/métodos , Bexiga Urinária/efeitos da radiação
8.
Med Phys ; 43(5): 2218, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27147334

RESUMO

PURPOSE: The feasibility of radiation therapy treatment planning using substitute computed tomography (sCT) generated from magnetic resonance images (MRIs) has been demonstrated by a number of research groups. One challenge with an MRI-alone workflow is the accurate identification of intraprostatic gold fiducial markers, which are frequently used for prostate localization prior to each dose delivery fraction. This paper investigates a template-matching approach for the detection of these seeds in MRI. METHODS: Two different gradient echo T1 and T2* weighted MRI sequences were acquired from fifteen prostate cancer patients and evaluated for seed detection. For training, seed templates from manual contours were selected in a spectral clustering manifold learning framework. This aids in clustering "similar" gold fiducial markers together. The marker with the minimum distance to a cluster centroid was selected as the representative template of that cluster during training. During testing, Gaussian mixture modeling followed by a Markovian model was used in automatic detection of the probable candidates. The probable candidates were rigidly registered to the templates identified from spectral clustering, and a similarity metric is computed for ranking and detection. RESULTS: A fiducial detection accuracy of 95% was obtained compared to manual observations. Expert radiation therapist observers were able to correctly identify all three implanted seeds on 11 of the 15 scans (the proposed method correctly identified all seeds on 10 of the 15). CONCLUSIONS: An novel automatic framework for gold fiducial marker detection in MRI is proposed and evaluated with detection accuracies comparable to manual detection. When radiation therapists are unable to determine the seed location in MRI, they refer back to the planning CT (only available in the existing clinical framework); similarly, an automatic quality control is built into the automatic software to ensure that all gold seeds are either correctly detected or a warning is raised for further manual intervention.


Assuntos
Marcadores Fiduciais , Imageamento por Ressonância Magnética/métodos , Reconhecimento Automatizado de Padrão/métodos , Neoplasias da Próstata/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Guiada por Imagem/métodos , Idoso , Análise por Conglomerados , Estudos de Viabilidade , Ouro , Humanos , Interpretação de Imagem Assistida por Computador/instrumentação , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/instrumentação , Masculino , Pessoa de Meia-Idade , Próstata/diagnóstico por imagem , Próstata/efeitos da radiação , Neoplasias da Próstata/diagnóstico por imagem , Planejamento da Radioterapia Assistida por Computador/instrumentação , Radioterapia Guiada por Imagem/instrumentação , Tomografia Computadorizada por Raios X/instrumentação , Tomografia Computadorizada por Raios X/métodos
9.
J Appl Clin Med Phys ; 17(5): 7-19, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-28297426

RESUMO

The purpose of this study was to determine the impact of magnetic resonance imaging (MRI) geometric distortions when using MRI for target delineation and planning for whole-breast, intensity-modulated radiotherapy (IMRT). Residual system distortions and combined systematic and patient-induced distortions are considered. This retrospective study investigated 18 patients who underwent whole-breast external beam radiotherapy, where both CT and MRIs were acquired for treatment planning. Distortion phantoms were imaged on two MRI systems, dedicated to radiotherapy planning (a wide, closed-bore 3T and an open-bore 1T). Patient scans were acquired on the 3T system. To simulate MRI-based planning, distortion maps representing residual system distortions were generated via deformable registration between phantom CT and MRIs. Patient CT images and structures were altered to match the residual system distortion measured by the phantoms on each scanner. The patient CTs were also registered to the corresponding patient MRI scans, to assess patient and residual system effects. Tangential IMRT plans were generated and optimized on each resulting CT dataset, then propagated to the original patient CT space. The resulting dose distributions were then evaluated with respect to the standard clinically acceptable DVH and visual assessment criteria. Maximum residual systematic distortion was measured to be 7.9 mm (95%<4.7mm) and 11.9 mm (95%<4.6mm) for the 3T and 1T scanners, respectively, which did not result in clinically unacceptable plans. Eight of the plans accounting for patient and systematic distortions were deemed clinically unacceptable when assessed on the original CT. For these plans, the mean difference in PTV V95 (volume receiving 95% prescription dose) was 0.13±2.51% and -0.73±1.93% for right- and left-sided patients, respectively. Residual system distortions alone had minimal impact on the dosimetry for the two scanners investigated. The combination of MRI systematic and patient-related distortions can result in unacceptable dosimetry for whole-breast IMRT, a potential issue when considering MRI-only radiotherapy treatment planning. PACS number(s): 87.61.-c, 87.57.cp, 87.57.nj, 87.55.D.


Assuntos
Neoplasias da Mama/radioterapia , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Conformacional/métodos , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/diagnóstico por imagem , Feminino , Humanos , Órgãos em Risco/efeitos da radiação , Radiometria/métodos , Dosagem Radioterapêutica , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos
10.
Int J Radiat Oncol Biol Phys ; 93(5): 1144-53, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26581150

RESUMO

PURPOSE: To validate automatic substitute computed tomography CT (sCT) scans generated from standard T2-weighted (T2w) magnetic resonance (MR) pelvic scans for MR-Sim prostate treatment planning. PATIENTS AND METHODS: A Siemens Skyra 3T MR imaging (MRI) scanner with laser bridge, flat couch, and pelvic coil mounts was used to scan 39 patients scheduled for external beam radiation therapy for localized prostate cancer. For sCT generation a whole-pelvis MRI scan (1.6 mm 3-dimensional isotropic T2w SPACE [Sampling Perfection with Application optimized Contrasts using different flip angle Evolution] sequence) was acquired. Three additional small field of view scans were acquired: T2w, T2*w, and T1w flip angle 80° for gold fiducials. Patients received a routine planning CT scan. Manual contouring of the prostate, rectum, bladder, and bones was performed independently on the CT and MR scans. Three experienced observers contoured each organ on MRI, allowing interobserver quantification. To generate a training database, each patient CT scan was coregistered to their whole-pelvis T2w using symmetric rigid registration and structure-guided deformable registration. A new multi-atlas local weighted voting method was used to generate automatic contours and sCT results. RESULTS: The mean error in Hounsfield units between the sCT and corresponding patient CT (within the body contour) was 0.6 ± 14.7 (mean ± 1 SD), with a mean absolute error of 40.5 ± 8.2 Hounsfield units. Automatic contouring results were very close to the expert interobserver level (Dice similarity coefficient): prostate 0.80 ± 0.08, bladder 0.86 ± 0.12, rectum 0.84 ± 0.06, bones 0.91 ± 0.03, and body 1.00 ± 0.003. The change in monitor units between the sCT-based plans relative to the gold standard CT plan for the same dose prescription was found to be 0.3% ± 0.8%. The 3-dimensional γ pass rate was 1.00 ± 0.00 (2 mm/2%). CONCLUSIONS: The MR-Sim setup and automatic sCT generation methods using standard MR sequences generates realistic contours and electron densities for prostate cancer radiation therapy dose planning and digitally reconstructed radiograph generation.


Assuntos
Imageamento por Ressonância Magnética/métodos , Imagem Multimodal/métodos , Neoplasias da Próstata/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Guiada por Imagem/métodos , Tomografia Computadorizada por Raios X/métodos , Idoso , Osso e Ossos , Marcadores Fiduciais , Ouro , Humanos , Masculino , Pessoa de Meia-Idade , Variações Dependentes do Observador , Próstata , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Radioterapia de Intensidade Modulada , Reto , Bexiga Urinária
11.
Med Image Anal ; 23(1): 56-69, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25966468

RESUMO

BACKGROUND: CT-MR registration is a critical component of many radiation oncology protocols. In prostate external beam radiation therapy, it allows the propagation of MR-derived contours to reference CT images at the planning stage, and it enables dose mapping during dosimetry studies. The use of carefully registered CT-MR atlases allows the estimation of patient specific electron density maps from MRI scans, enabling MRI-alone radiation therapy planning and treatment adaptation. In all cases, the precision and accuracy achieved by registration influences the quality of the entire process. PROBLEM: Most current registration algorithms do not robustly generalize and lack inverse-consistency, increasing the risk of human error and acting as a source of bias in studies where information is propagated in a particular direction, e.g. CT to MR or vice versa. In MRI-based treatment planning where both CT and MR scans serve as spatial references, inverse-consistency is critical, if under-acknowledged. PURPOSE: A robust, inverse-consistent, rigid/affine registration algorithm that is well suited to CT-MR alignment in prostate radiation therapy is presented. METHOD: The presented method is based on a robust block-matching optimization process that utilises a half-way space definition to maintain inverse-consistency. Inverse-consistency substantially reduces the influence of the order of input images, simplifying analysis, and increasing robustness. An open source implementation is available online at http://aehrc.github.io/Mirorr/. RESULTS: Experimental results on a challenging 35 CT-MR pelvis dataset demonstrate that the proposed method is more accurate than other popular registration packages and is at least as accurate as the state of the art, while being more robust and having an order of magnitude higher inverse-consistency than competing approaches. CONCLUSION: The presented results demonstrate that the proposed registration algorithm is readily applicable to prostate radiation therapy planning.


Assuntos
Imageamento por Ressonância Magnética/métodos , Imagem Multimodal , Neoplasias da Próstata/patologia , Neoplasias da Próstata/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Tomografia Computadorizada por Raios X , Algoritmos , Humanos , Masculino
12.
Med Phys ; 42(4): 1982-91, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25832089

RESUMO

PURPOSE: Accurate geometry is required for radiotherapy treatment planning (RTP). When considering the use of magnetic resonance imaging (MRI) for RTP, geometric distortions observed in the acquired images should be considered. While scanner technology and vendor supplied correction algorithms provide some correction, large distortions are still present in images, even when considering considerably smaller scan lengths than those typically acquired with CT in conventional RTP. This study investigates MRI acquisition with a moving table compared with static scans for potential geometric benefits for RTP. METHODS: A full field of view (FOV) phantom (diameter 500 mm; length 513 mm) was developed for measuring geometric distortions in MR images over volumes pertinent to RTP. The phantom consisted of layers of refined plastic within which vitamin E capsules were inserted. The phantom was scanned on CT to provide the geometric gold standard and on MRI, with differences in capsule location determining the distortion. MRI images were acquired with two techniques. For the first method, standard static table acquisitions were considered. Both 2D and 3D acquisition techniques were investigated. With the second technique, images were acquired with a moving table. The same sequence was acquired with a static table and then with table speeds of 1.1 mm/s and 2 mm/s. All of the MR images acquired were registered to the CT dataset using a deformable B-spline registration with the resulting deformation fields providing the distortion information for each acquisition. RESULTS: MR images acquired with the moving table enabled imaging of the whole phantom length while images acquired with a static table were only able to image 50%-70% of the phantom length of 513 mm. Maximum distortion values were reduced across a larger volume when imaging with a moving table. Increased table speed resulted in a larger contribution of distortion from gradient nonlinearities in the through-plane direction and an increased blurring of capsule images, resulting in an apparent capsule volume increase by up to 170% in extreme axial FOV regions. Blurring increased with table speed and in the central regions of the phantom, geometric distortion was less for static table acquisitions compared to a table speed of 2 mm/s over the same volume. Overall, the best geometric accuracy was achieved with a table speed of 1.1 mm/s. CONCLUSIONS: The phantom designed enables full FOV imaging for distortion assessment for the purposes of RTP. MRI acquisition with a moving table extends the imaging volume in the z direction with reduced distortions which could be useful particularly if considering MR-only planning. If utilizing MR images to provide additional soft tissue information to the planning CT, standard acquisition sequences over a smaller volume would avoid introducing additional blurring or distortions from the through-plane table movement.


Assuntos
Imageamento por Ressonância Magnética/instrumentação , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador/métodos , Desenho de Equipamento , Imageamento Tridimensional/instrumentação , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Movimento (Física) , Plásticos , Planejamento da Radioterapia Assistida por Computador/instrumentação , Tomografia Computadorizada por Raios X , Vitamina E
13.
Phys Med Biol ; 60(8): 3097-109, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25803177

RESUMO

To clinically implement MRI simulation or MRI-alone treatment planning requires comprehensive end-to-end testing to ensure an accurate process. The purpose of this study was to design and build a geometric phantom simulating a human male pelvis that is suitable for both CT and MRI scanning and use it to test geometric and dosimetric aspects of MRI simulation including treatment planning and digitally reconstructed radiograph (DRR) generation.A liquid filled pelvic shaped phantom with simulated pelvic organs was scanned in a 3T MRI simulator with dedicated radiotherapy couch-top, laser bridge and pelvic coil mounts. A second phantom with the same external shape but with an internal distortion grid was used to quantify the distortion of the MR image. Both phantoms were also CT scanned as the gold-standard for both geometry and dosimetry. Deformable image registration was used to quantify the MR distortion. Dose comparison was made using a seven-field IMRT plan developed on the CT scan with the fluences copied to the MR image and recalculated using bulk electron densities. Without correction the maximum distortion of the MR compared with the CT scan was 7.5 mm across the pelvis, while this was reduced to 2.6 and 1.7 mm by the vendor's 2D and 3D correction algorithms, respectively. Within the locations of the internal organs of interest, the distortion was <1.5 and <1 mm with 2D and 3D correction algorithms, respectively. The dose at the prostate isocentre calculated on CT and MRI images differed by 0.01% (1.1 cGy). Positioning shifts were within 1 mm when setup was performed using MRI generated DRRs compared to setup using CT DRRs.The MRI pelvic phantom allows end-to-end testing of the MRI simulation workflow with comparison to the gold-standard CT based process. MRI simulation was found to be geometrically accurate with organ dimensions, dose distributions and DRR based setup within acceptable limits compared to CT.


Assuntos
Imageamento por Ressonância Magnética/métodos , Neoplasias da Próstata/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Algoritmos , Humanos , Masculino , Pelve/diagnóstico por imagem , Imagens de Fantasmas , Radiometria , Tomografia Computadorizada por Raios X/métodos
14.
IEEE Trans Image Process ; 22(7): 2849-63, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23335669

RESUMO

Curvilinear structure detection filters are crucial building blocks in many medical image processing applications, where they are used to detect important structures, such as blood vessels, airways, and other similar fibrous tissues. Unfortunately, most of these filters are plagued by an implicit single structure direction assumption, which results in a loss of signal around bifurcations. This peculiarity limits the performance of all subsequent processes, such as understanding angiography acquisitions, computing an accurate segmentation or tractography, or automatically classifying image voxels. This paper presents a new 3-D curvilinear structure detection filter based on the analysis of the structure ball, a geometric construction representing second order differences sampled in many directions. The structure ball is defined formally, and its computation on a discreet image is discussed. A contrast invariant diffusion index easing voxel analysis and visualization is also introduced, and different structure ball shape descriptors are proposed. A new curvilinear structure detection filter is defined based on the shape descriptors that best characterize curvilinear structures. The new filter produces a vesselness measure that is robust to the presence of X- and Y-junctions along the structure by going beyond the single direction assumption. At the same time, it stays conceptually simple and deterministic, and allows for an intuitive representation of the structure's principal directions. Sample results are provided for synthetic images and for two medical imaging modalities.


Assuntos
Angiografia/métodos , Processamento de Imagem Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Simulação por Computador , Coração/diagnóstico por imagem , Humanos , Curva ROC , Sensibilidade e Especificidade
15.
IEEE Trans Med Imaging ; 31(8): 1557-72, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22531755

RESUMO

A 2D/3D nonrigid registration method is proposed that brings a 3D centerline model of the coronary arteries into correspondence with bi-plane fluoroscopic angiograms. The registered model is overlaid on top of interventional angiograms to provide surgical assistance during image-guided chronic total occlusion procedures, thereby reducing the uncertainty inherent in 2D interventional images. The proposed methodology is divided into two parts: global structural alignment and local nonrigid registration. In both cases, vessel centerlines are automatically extracted from the 2D fluoroscopic images, and serve as the basis for the alignment and registration algorithms. In the first part, an energy minimization method is used to estimate a global affine transformation that aligns the centerline with the angiograms. The performance of nine general purpose optimizers has been assessed for this problem, and detailed results are presented. In the second part, a fully nonrigid registration method is proposed and used to compensate for any local shape discrepancy. This method is based on a variational framework, and uses a simultaneous matching and reconstruction process to compute a nonrigid registration. With a typical run time of less than 3 s, the algorithms are fast enough for interactive applications. Experiments on five different subjects are presented and show promising results.


Assuntos
Vasos Coronários/anatomia & histologia , Fluoroscopia/métodos , Imageamento Tridimensional/métodos , Modelos Cardiovasculares , Cirurgia Assistida por Computador/métodos , Algoritmos , Simulação por Computador , Angiografia Coronária , Humanos , Tomografia Computadorizada por Raios X
16.
Magn Reson Imaging ; 29(2): 243-59, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20951521

RESUMO

Real-world magnetic resonance imaging of the brain is affected by intensity nonuniformity (INU) phenomena which makes it difficult to fully automate the segmentation process. This difficult task is accomplished in this work by using a new method with two original features: (1) each brain tissue class is locally modeled using a local linear region representative, which allows us to account for the INU in an implicit way and to more accurately position the region's boundaries; and (2) the region models are embedded in the level set framework, so that the spatial coherence of the segmentation can be controlled in a natural way. Our new method has been tested on the ground-truthed Internet Brain Segmentation Repository (IBSR) database and gave promising results, with Tanimoto indexes ranging from 0.61 to 0.79 for the classification of the white matter and from 0.72 to 0.84 for the gray matter. To our knowledge, this is the first time a region-based level set model has been used to perform the segmentation of real-world MRI brain scans with convincing results.


Assuntos
Algoritmos , Inteligência Artificial , Encéfalo/anatomia & histologia , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Reconhecimento Automatizado de Padrão/métodos , Simulação por Computador , Feminino , Humanos , Aumento da Imagem/métodos , Modelos Lineares , Masculino , Modelos Biológicos , Modelos Estatísticos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...